Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Biomolecules & Therapeutics ; : 402-409, 2016.
Article in English | WPRIM | ID: wpr-68873

ABSTRACT

It has been found that 4-isopropyl-2,6-bis(1-phenylethyl)phenol (KTH-13), a novel compound isolated from Cordyceps bassiana, is able to suppress tumor cell proliferation by inducing apoptosis. To mass-produce this compound, we established a total synthesis method. Using those conditions, we further synthesized various analogs with structural similarity to KTH-13. In this study, we aimed to test their anti-cancer activity by measuring anti-proliferative and pro-apoptotic activities. Of 8 compounds tested, 4-methyl-2,6-bis(1-phenylethyl)phenol (KTH-13-Me) exhibited the strongest anti-proliferative activity toward MDA-MB 231 cells. KTH-13-Me also similarly suppressed the survival of various cancer cell lines, including C6 glioma, HCT-15, and LoVo cells. Treatment of KTH-13-Me induced several apoptotic signs in C6 glioma cells, such as morphological changes, induction of apoptotic bodies, and nuclear fragmentation and chromatin condensation. Concordantly, early-apoptotic cells were also identified by staining with FITC-Annexin V/PI. Moreover, KTH-13-Me highly enhanced the activation of caspase-3 and caspase-9, and decreased the protein level of Bcl-2. In addition, the phosphorylation levels of Src and STAT3 were diminished in KTH-13-Me-treated C6 cells. Therefore, these results suggest that KTH-13-Me can be developed as a novel anti-cancer drug capable of blocking proliferation, inducing apoptosis, and blocking cell survival signaling in cancer cells.


Subject(s)
Apoptosis , Caspase 3 , Caspase 9 , Cell Line , Cell Proliferation , Cell Survival , Chromatin , Cordyceps , Extracellular Vesicles , Glioma , Methods , Phosphorylation
2.
Cancer Research and Treatment ; : 330-337, 2004.
Article in English | WPRIM | ID: wpr-226061

ABSTRACT

PURPOSE: We have examined that dexamethasone inhibits apoptotic cell death of A549 lung epithelial cells through TRAIL and anti-cancer drugs. The purpose of the study is to determine the roles of GR, cIAP and NF- kappaB in this mechanism. MATERIALS AND METHODS: In the A549 lung epithelial cell line, TRAIL, taxol, doxorubicine & gemcitabine were used to investigate cell toxicity. Cells were pretreated 12 hours in advance with dexamethasone. RU486 was pretreated 30 minutes before dexamethasone. Crystal violet assay was used for cell toxicity tests. Apoptosis assay was performed by taking morphologic surveys with fluorescent microscopy after double staining with Hoechst 33342 & propium iodide. RT-PCR was used to investigate the gene expression of cIAP1 & cIAP2 by dexamethasone. Ad-IkappaBalpha-SR transduction study was used for the role of NF-kappaB. RESULTS: TRAIL and anti-cancer drug-induced apoptosis was partially suppressed in A549 cells pretreated with dexamethasone. The inhibitory effect on cell death disappeared in A549 cells pretreated with RU486. Using RT-PCR, changes of cIAP1 and cIAP2 genes manifestation in A549 cells subsequent to pretreatment with dexamethasone were examined. The results showed an increase in cIAP2 expression during a course of time which was suppressed by RU486 pretreatment. Induction of cIAP2 expression changes by dexamethasone was uniquely observed despite the blockade of NF-kappa by Ad-IkappaB alpha-SR transduction. CONCLUSIONS: These results suggest that dexametha sone inhibits TRAIL- and anti-cancer drug-induced apoptosis in A549 cells by inducing cIAP2 gene expression through a GR-mediated, NF-kappa-independent pathway.


Subject(s)
Apoptosis , Cell Death , Dexamethasone , Doxorubicin , Epithelial Cells , Gene Expression , Gentian Violet , Lung , Microscopy , Mifepristone , NF-kappa B , Paclitaxel , Prednisone , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL